3 de fevereiro de 2015

What can the canary genome tell us about the evolution of birdsong?

New research published in Genome Biology reveals clues on the evolution of singing behaviour in canaries.
Stefan Leitner, Carolina Frankl-Vilches and Manfred Gahr are from the Department of Behavioural Neurobiology at the Max Planck Institute for Ornithology in Seewiesen, and Heiner Kuhl and Martin Werber are from the Sequencing Core Facility of the Max Planck Institute for Molecular Genetics in Berlin, under guidance of Bernd Timmermann. They are main authors of an article in Genome Biology where they identify the canary genome and then use it to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds.
Songbirds comprise almost half of all bird species and exhibit a complex behaviour with their elaborate song, making them suitable for neurobiologists to gain insight into general mechanisms of behaviour.
The canary has become a preferred model to investigate the neurological changes (or ‘brain plasticity’) affecting hormone-dependent song. This is because it has a pronounced reproductive season, with seasonal changes in song and steroid hormone concentrations, and a varying degree of brain plasticity between the breeding and the non-breeding season.
Canaries have been domesticated since the 15th century and are the descendants of the wild canary that lives on the Azores, Madeira and Canary Islands in the North Atlantic Ocean. Like their wild ancestors, domesticated canaries sing stereotyped songs under long-day (breeding) conditions and more variable songs under short-day (non-breeding) photoperiods.
We further looked at the wider implications of how the canary genome sequence not only permits the study of hormonal influence on song and behaviour, but also provides a good model for the study of neural plasticity that could serve as a model in molecular neuroscience studies.